
In Proceedings of 17th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2003), Nice, France,
April 2003, 10 pages.

Agent-Based Grid Load Balancing Using Performance-Driven Task Scheduling

Junwei Cao*1, Daniel P. Spooner†, Stephen A. Jarvis†, Subhash Saini‡ and Graham R. Nudd†

*C&C Research Laboratories, NEC Europe Ltd., Sankt Augustin, Germany
†Department of Computer Science, University of Warwick, Coventry, UK

‡NASA Ames Research Center, Moffett Field, California, USA
Email address for correspondence: cao@ccrl-nece.de

1 This work was carried out when the author was with the University of Warwick.

Abstract

Load balancing is a key concern when developing
parallel and distributed computing applications. The
emergence of computational grids extends this problem,
where issues of cross-domain and large-scale scheduling
must also be considered. In this work an agent-based
grid management infrastructure is coupled with a
performance-driven task scheduler that has been
developed for local grid load balancing. Each grid
scheduler utilises predictive application performance
data and an iterative heuristic algorithm to engineer
local load balancing across multiple processing nodes.
At a higher level, a hierarchy of homogeneous agents are
used to represent multiple grid resources. Agents
cooperate with each other to balance workload in the
global grid environment using service advertisement and
discovery mechanisms. A case study is included with
corresponding experimental results to demonstrate that
both local schedulers and agents contribute to overall
grid load balancing, which significantly improves grid
application execution performance and resource
utilisation.

1. Introduction

A computational grid is an emerging computing
infrastructure that enables effective access to high
performance computing resources [11]. Resource
management and scheduling are key grid services, where
issues of load balancing represent a common concern for
most grid infrastructure developers. While these are
established research areas in parallel and distributed
computing, grid computing environments present a
number of new challenges, including:

• Cross-domain: The process of grid resource
scheduling encompasses multiple administrative

domains, where one domain may be unaware of the
resources offered by another. The lack of central
ownership and control means that it is difficult to
map an entire set of tasks to permutations of the
available resources.

• Large-scale: As a grid can encompass a large
number of high performance computing resources
that are not entirely dedicated to the environment,
computational capabilities can vary significantly
over time. These dynamic properties must be
addressed when implementing grid information and
resource management infrastructures.

In our previous work an agent-based methodology
was developed for large-scale distributed software
systems with highly dynamic behaviours [6, 7]. This has
been used in the implementation of an agent-based
resource management infrastructure for grid computing
[8, 9], where each agent represents a local grid resource
and acts as a service provider of high performance
computing power. Agents cooperate with each other to
discover available resources for tasks using a technique
of service advertisement and discovery.

The research presented in this paper adopts the
agent-based methodology to grid load balancing,
achieved by coupling the agent system with a
performance-driven task scheduler that has been
developed for local grid load balancing. Each local
scheduler uses an iterative heuristic algorithm based on
the predictive performance data for each application. The
algorithm aims to minimise makespan and processor idle
time, whilst meeting the deadlines set for each task. The
algorithm is based on an evolutionary process and is
therefore able to absorb system changes such as the
addition or deletion of tasks, or changes in the number of
hosts or processors available in the local domain. At a
higher level, the hierarchy of homogeneous agents are
responsible for dispatching tasks from grid users to each
of the available local grid schedulers; this is orchestrated

by some matchmaking and decision-making policies that
are also driven by performance prediction data. Each
agent is only aware of neighbouring agents and service
advertisement and discovery requests are only processed
among neighbouring agents, which provides the
possibility for scaling over large wide-area grid
architectures.

Application performance prediction provides the
essential functionality that enables the grid load
balancing capabilities described in this work. The PACE
toolkit [15] is used to provide this capability for both the
local schedulers and the grid agents. The main
components of the PACE toolkit include application tools,
resource tools, and an evaluation engine. The PACE
evaluation engine can combine application and resource
models at run time to produce performance data (such as
total execution time). In the work described in [5] an
ASCI (Accelerated Strategic Computing Initiative)
kernel application, Sweep3D, is used to illustrate the
performance prediction capabilities of PACE. The
validation results show that a high level of accuracy can
be obtained, cross-platform comparisons can be easily
undertaken, and the process benefits from a rapid
evaluation time. These features allow PACE predictive
data to be used on-the-fly for grid resource load
balancing.

There are a number of approaches to scheduling and
load balancing parallel and distributed systems. Unlike
batch queuing systems, such as Condor [13] and LSF
[19], that address resource management within a local
grid, the local grid scheduler described in this work is
based on application performance prediction. While
AppLeS [4] and Ninf [14] are also based on performance
evaluation techniques, they utilise the NWS [18] resource
monitoring service, as opposed to the performance
prediction capabilities provide by the PACE toolkit.
Nimrod [3] has a number of similarities to this work,
including a parametric engine and heuristic algorithms
[1] for scheduling jobs. The kernel of our local grid
scheduler is a genetic algorithm (GA) [20]. Some
existing systems use the Globus toolkit [10] to integrate
with the grid computing environment, including Condor-
G [12], Nimrod/G [2] and Ninf-G [17]. The scheduler
introduced in this work is distributed for grid computing
using an agent-based methodology; where agents are
used to control the query process and to make resource
discovery decisions based on internal logic rather than
relying on a fixed-function query engine. Agent-based
resource discovery is also used in [16], where each agent
either represents a user application, a resource, or a
matchmaking service. Rather than using a collection of
predefined specialised agents, this work uses a hierarchy

of homogeneous agents that can be reconfigured with
different roles at run time.

The paper is organised as follows: section 2
introduces the theory and implementation of the
schedulers for local load balancing; in section 3, the
agent-based implementation of a grid load balancing
system is described; a case study with experimental
results is included in section 4 and the paper concludes in
section 5.

2. Performance-Driven Task Scheduling

In this work, a local grid is considered to be a
network of processing nodes (such as a multiprocessor or
a cluster of workstations). Load balancing issues are
addressed at this level using task scheduling algorithms
driven by PACE performance predictions.

2.1 Genetic Algorithm

Consider a grid resource P with n processing nodes.
A PACE resource model �

i can be used to describe the
performance information of each processor Pi.

{ }niPP i ,......,2,1| == (1)

{ }nii ,......,2,1| == ρρ (2)

A set of parallel tasks T is considered to be run on P,
where a PACE application model � j includes the
performance related information of each task Tj.
Additionally, Tj is specified with a requirement of the
application execution deadline � j from the user.

{ }mjTT j ,......,2,1| == (3)

{ }mjj ,......,2,1| == σσ (4)

{ }mjj ,......,2,1| == δδ (5)

A schedule is defined by a set of nodes PPj ⊆

(corresponding ρρ ⊆j
) allocated to each task Tj and a

start time � j at which the allocated nodes all begin to
execute the task in unison. The execution time for each
task Tj is a function,),(jjxt σρ , provided by the PACE

evaluation engine. The completion time � j of each task Tj
is defined as:

),(jjxjj t σρτη += . (6)

The makespan, � , for a particular schedule, which
represents the latest completion time of any task, is
subsequently defined as:

{ }j
mj

ηω
≤≤

=
1
max , (7)

The goal is to minimise function (7) with respect to
the schedule, at the same time

jjj δη ≤∀ , should also be

satisfied as far as possible. In order to obtain near
optimal solutions to this combinatorial optimisation
problem, the approach taken in this work is to find
schedules that meet the above criteria through the use of
an iterative heuristic method – in this case a genetic
algorithm. The process involves building a set of
schedules and identifying solutions that have desirable
characteristics. These are then carried into the next
generation.

The technique requires a coding scheme that can
represent all legitimate solutions to the optimisation
problem. Any possible solution is uniquely represented by
a particular string, Sk, and strings are manipulated in
various ways until the algorithm converges on a near
optimal solution. In order for this manipulation to
proceed in the correct direction, a method of prescribing
a quality value (or fitness) to each solution string is
required. The algorithm for providing this value is called
the fitness function fv.

3 5 2 1 6 4

11010 01010 11110 01000 10111 01001

map of map of map of map of map of map of
task #3 task #5 task #2 task #1 task #6 task #4

task ordering

task #1

task #2

task #3

task #5

task #4

task #6

1

3

5

4

2

time

ho
st

Figure 1. An Example Coding Scheme and
Corresponding Gantt Chart

The coding scheme we have developed for this
problem consists of two parts: an ordering part, which
specifies the order in which the tasks are to be executed
and a mapping part, which specifies the allocation of
processing nodes to each task. The ordering of the task-
allocation sections in the mapping part of the string is
commensurate with the task order. An example of a
solution string and its associated schedule are shown in

Figure 1. The execution times of the various tasks are
provided by the performance prediction system and are
associated with the task object for evaluation by the
fitness function fv.

A combined cost function is used which considers
makespan, idle time and deadline. It is straightforward to
calculate the makespan, � k, of the schedule represented
by any solution string Sk. The nature of the idle time
should also be taken into account. Idle time at the front of
the schedule is particularly undesirable as this is the
processing time which will be wasted first, and is least
likely to be recovered by further iterations of the GA or if
more tasks are added. Solutions that have large idle times
are penalised by weighting pockets of idle time to give � k,
which penalises early idle time more than later idle time.
The contract penalty � k is derived from the expected
deadline times � and task completion time � . The cost
value for a schedule, represented by a solution string Sk,
is derived from these metrics and their impact
predetermined by:

cim
k

c
k

i
k

m
k

c WWW

WWW
f

++
++

=
θϕω (8)

The cost value is then normalised to a fitness value
using a dynamic scaling technique:

minmax

max

cc

k
cck

v ff

ff
f

−
−

= , (9)

where fc
max and fc

min represent the best and worst cost
value in the scheduling set.

The genetic algorithm utilises a fixed population size
and stochastic remainder selection. Specialised crossover
and mutation functions are developed for use with the
two-part coding scheme. The crossover function first
splices the two ordering strings at a random location, and
then reorders the pairs to produce legitimate solutions.
The mapping parts are crossed over by first reordering
them to be consistent with the new task order, and then
performing a single-point (binary) crossover. The
reordering is necessary to preserve the node mapping
associated with a particular task from one generation to
the next. The mutation stage is also two-part, with a
switching operator randomly applied to the ordering
parts, and a random bit-flip applied to the mapping parts.

2.2 System Implementation

A local grid scheduling system is developed in Java
to implement the algorithm described above. It uses the
PACE evaluation engine for application performance
prediction data with several other modules included for

task management, execution, and resource monitoring.
The system implementation is illustrated in Figure 2.

Figure 2. The System Implementation of a
Performance-Driven Local Grid Scheduler

• Task management. Requests are passed to the task
management module where they queue for
scheduling and execution. Each task is given a
unique identification number and awaits the
attention of the GA scheduler. Task management
also interfaces with the operations on the task queue,
including adding, deleting or inserting tasks. The
task queue is regarded by the GA scheduling as the
optimisation set of tasks T.

• Resource monitoring. The resource monitoring is
responsible for gathering statistics concerning the
process nodes on which tasks may execute. These
statistics include availability, load average and idle
time. Currently, only host availability is supported,
where the resource monitor queries each known node
every five minutes. This is provided to the GA
scheduler as the currently available resources P on
which tasks can be scheduled. Resource monitoring
is also responsible for organising the GA scheduling
results and resource availabilities into service
information that can be advertised. This is only used
when a grid environment is considered and will be
introduced in the following sections.

• Task execution. This is responsible for executing the
program associated with a task on a scheduled list of
processors. Currently, MPI and PVM based
programs are supported and the executable programs
must be pre-compiled and available in all local file
systems. It is envisaged that this will be extended as
the system matures.

The PACE evaluation engine is used to produce
predictive data on the task execution time given
appropriate application and resource models. While
PACE evaluations complete relatively quickly (usually in
the order of a few tenths of a second), as the search space
of the GA is large, it is not usually possible to pre-
calculate all required performance estimates ahead of

time. A demand-driven evaluation scheme is used,
coupled with a cache of past evaluations. When a
particular evaluation result is requested, the cache is
searched. If the result already exists, it is returned to the
scheduler. Otherwise the PACE evaluation engine
executes and the result is added to the cache before being
returned.

The genetic algorithm and corresponding system
implementation provide a fine-grained solution to
dynamic load balancing on local grid resources and aim
to maximise resource utilisation and meet task deadlines.
However, this cannot provide load balancing services to a
global grid since the GA does not scale to thousands of
processing nodes and tasks. An additional mechanism for
distributing over wide-area grid resources is required.
This is achieved through the introduction of an agent-
based resource advertisement and discovery framework.

3. Agent-based Grid Load Balancing

The problem which is considered in this section is
the discovery of grid resources that provide the optimum
execution performance for globally grid-submitted tasks.
This research is not aimed at co-allocating a task onto
more than one grid resource. Most MPI or PVM based
programs use tightly coupled parallelism and it is
difficult to achieve high performance when relatively
slow communication mediums are involved.

3.1 Agent-based Service Discovery

While agent-based service discovery and its
application to grid resource management has been
described in detail in previous work [6, 7, 8, 9], a brief
introduction is provided which demonstrates how the
concepts apply to grid load balancing. This is extended to
include a detailed system implementation in section 3.2.

A performance-driven scheduler (described in
section 2) is responsible for managing the processing
nodes at a local level and scheduling the incoming tasks
to achieve local load balancing. Each agent provides a
high-level representation of each local scheduler and
therefore characterises these local resources as high-
performance computing service providers in the wider
grid environment. This higher-level representation is
enhanced by organising the agents into a hierarchy,
where the service information provided at each local grid
resource can be advertised throughout the hierarchy and
agents can cooperate with each other to discover
available resources.

• Service advertisement. An agent can advertise
service information to both upper and lower agents.

Task Management

GA Scheduling

PACE Evaluation Engine

Task Info.

Evaluation Results

Schedule Info.

Task Execution Resource Monitoring

Resource Info.

Application Models Resource Models

Results Resource Info. Request Info.

Different strategies can be used to control these
processes, which has an impact on the system
efficiency. Service information can be pushed to or
pulled from other agents, a process that is triggered
by system events or through periodic updates.

• Service discovery. Discovering available services is
also a cooperative activity. Within each agent, its
own service is evaluated first. If the requirement can
be met locally, the discovery ends successfully.
Otherwise service information from both upper and
lower agents is evaluated and the request dispatched
to the agent which is able to provide the best
requirement/resource match. If no service can meet
the requirement, the request is submitted to the
upper agent. When the head of the hierarchy is
reached and the available service is still not found,
the discovery terminates unsuccessfully (representing
a request for a computing resource which is not
supported by the available grid).

While the processes of service advertisement and
discovery is not motivated by grid scheduling and load
balancing, it can result in an indirect coarse-grained load
balancing effect. A task tends to be dispatched to a grid
resource that has less workload and can meet the
application execution deadline. The discovery process
does not aim to find the best service for each request, but
endeavours to find an available service provided by a
neighbouring grid resource. While this may decrease the
load balancing effect, the trade-off is reasonable as grid
users prefer to find a satisfactory resource as fast and as
local as possible.

The advertisement and discovery mechanisms also
allow possible system scalability. Most requests are
processed in a local domain and need not to be submitted
to a wider area. Both advertisement and discovery
requests are processed between neighbouring agents and
the system has no central structure which might act as a
potential bottleneck. While further work is necessary to
test the scalability of the system, the experiments
described in section 4 illustrate the contribution of both
local schedulers and agents to the process of grid load
balancing. These experiments use the initial
implementation as described below.

3.2 System Implementation

The system architecture can be found in Figure 3.
Agents are implemented using Java and data are
represented in an XML format. Different PACE tools are
integrated for different uses. The local schedulers are
performance-driven - as described in section 2. The detail
of how the agents utilise the PACE performance data and

work with local schedulers to achieve grid load balancing
is described.

User Portals

Agent Hierarchy

Local Schedulers

Grid Resources

Application Tools

Resource Tools

Evaluation

Engine

Agent-based grid load balancing PACE performance prediction

Figure 3. The System Architecture for Agent-
Based Grid Load Balancing

Local schedulers are responsible for the submission
of service information to the agents (see section 2.2). An
example of this service information can be found in
Figure 4.

<agent gr i d t ype=” ser v i ce” >
 <agent >
 <addr ess>gem. dcs. war wi ck. ac. uk</ addr ess>
 <por t >1000</ por t >
 </ agent >
 <c l ust er >
 <addr ess>gem. dcs. war wi ck. ac. uk</ addr ess>
 <por t >10000</ por t >
 <t ype>SunUl t r a10</ t ype>
 <npr oc>16</ npr oc>
 <envi r onment >mpi </ envi r onment >
 <envi r onment >pvm</ envi r onment >
 <envi r onment >t est </ envi r onment >
 <f r eet i me>Nov 15 04: 43: 10 2001</ f r eet i me>
 </ c l ust er >
<agent gr i d>

Figure 4. An Example Service Information

The identity of a local scheduler and its
corresponding agent is provided by a tuple of the address
and port used to initiate communication. The hardware
model and the number of processors is also provided. The
example specifies a single grid resource, in this case a
cluster of 16 SunUltra10 workstations. To simplify the
problem, the processors within each grid node are
configured to be homogeneous. The application execution
environments that are supported by the current
implementation of the local schedulers include MPI,
PVM, and a test mode that is designed for the
experiments described in this work. Under test mode,
tasks are not actually executed and the predictive
application execution times are scheduled and assumed to
be accurate. The latest GA scheduling makespan �
indicates the earliest (approximate) time that
corresponding processors become available for more
tasks. Due to the effect of GA load balancing, it is

reasonable to assume that all processors within a grid
have approximately the same freetime. The agents use
this item to estimate the workload of each grid resource
and make decisions on where to dispatch incoming tasks.
This item changes over time and must be frequently
updated. Service advertisement is therefore important
among the agents.

A portal has been developed which allows users to
submit requests destined for the grid resources. An
example request is given in Figure 5.

<agent gr i d t ype=" r equest " >
 <appl i cat i on>
 <name>sweep3d</ name>
 <bi nar y>
 <f i l e>bi nar y/ sweep3d</ f i l e>
 <i nput f i l e>bi nar y/ i nput . 50</ i nput f i l e>
 </ bi nar y>
 <per f or mance>
 <dat at ype>pacemodel </ dat at ype>
 <model name>model / sweep3d</ model name>
 </ per f or mance>
 </ appl i cat i on>
 <r equi r ement >
 <envi r onment >t est </ envi r onment >
 <deadl i ne>Nov 15 04: 43: 17 2001</ deadl i ne>
 </ r equi r ement >
 <emai l >j unwei @dcs. war wi ck. ac. uk</ emai l >
</ agent gr i d>

Figure 5. An Example Request Information

A user is required to specify the details of the
application, the requirements and contact information for
each request. Application information includes binary
executable files and also the corresponding PACE
application performance model � r, which is generated
using the application tools embedded in the user portal.
In the current implementation we assume that both
binary and model files are pre-compiled and available in
all local file systems. In the requirements, both the
application execution environment and the required
deadline time � r should be specified. Currently the user’s
email address is used as the contact information to which
the results of the submission are posted.

Service discovery processes are triggered by the
arrival of a request at an agent, where the kernel of this
process is the matchmaking between service and request
information. This match is straightforward if a local grid
scheduler can provide the required application execution
environment. The expected execution completion time
for a given task on a given resource can be estimated
using:

{ }),(min
,,,

rx
PPP

r t σρωη
ρρρ Φ≠⊆Φ≠⊆∀

+= . (10)

For a homogeneous local grid resource, the PACE
evaluation function is called n times. If

rr δη ≤ , the

resource is considered to be able to meet the required
deadline. Otherwise, an appropriate local resource is not

considered available for the incoming task. This
performance estimation of local grid resources at the
agent level is simple but efficient. However, when the
task is dispatched to an available resource, the real
situation may differ from the scenario considered in (10).
The local GA scheduler may change the task order and
advance or postpone a specific task execution in order to
balance the workload on different processors, and in so
doing maximise resource utilisation whilst maintaining
the deadline contracts of each user.

Service discovery for a request within an agent
involves multiple matchmaking processes. An agent
always gives priority to the local scheduler. Only when
the local resource is unavailable is the service
information of other grid resources evaluated and the
request dispatched to another agent. In order to measure
the effect of this mechanism for grid scheduling and load
balancing, several performance metrics are defined.

3.3. Performance Metrics

There are a number of performance criteria that can
be used to describe grid resource management and
scheduling systems. What is considered as high
performance depends on the system requirements. In this
work three common statistics are investigated
quantitatively and used to characterise the effect of grid
load balancing. These include: average advance time of
application execution completion � , average resource
utilisation rate � and load balancing level

�
.

During a period of time t, a set of M parallel tasks T
are scheduled onto grid resources P with N processing
nodes. Note that the processing nodes may include those
at all local grids. The final scheduling scenario can be
described using the allocation to each task Tj (with
deadline � j) a set of nodes PPj ⊆ and a time domain [� j,

� j] during which the allocated nodes are simultaneously
utilised for task execution.

The average advance time of application execution
completion � can be calculated directly using:

M

M

j
jj

�

=

−
= 1

)(ηδ
ε , (11)

which is negative when most deadlines fail. The resource
utilisation rate � i of each processing node Pi is calculated
as follows:

t
ji PPj

jj

i

�

∈∀

−
= ,

)(τη
υ . (12)

The average resource utilisation rate � of all
processing nodes P is:

N

N

i
i

�
== 1

υ
υ , (13)

where � is in the range 0 … 1. The mean square
deviation of � i is defined as:

N
d

N

i
i

�
=

−
= 1

2)(υυ
, (14)

and the relative deviation of d over � that describes the
load balancing level of the system is:

υ
β d−=1 . (15)

The most effective load balancing is achieved when
d equals zero and � equals 1. The three aspects of the
system described above are interrelated. For example, if
the grid workload is balanced across all the processing
nodes, the resource utilisation rate is usually high and the
tasks finish quickly. These are illustrated in the case
study described in the next section.

4. A Case Study

Three experiments have been designed using the
system implementations described in sections 2 and 3 to
evaluate different load balancing configurations.
Experimental results regarding the three performance
metrics are also included to illustrate the contribution of
local schedulers and agents for grid load balancing to
improve both resource utilisation and application
execution.

4.1. Experimental Design

The experimental system is configured with twelve
agents, illustrated by the hierarchy shown in Figure 6.
These agents are named S1……S12 (for the sake of
brevity) and represent heterogeneous hardware resources
containing sixteen processing nodes per resource. As
shown in Figure 6, the resources range in their
computational capabilities. The SGI multi-processor is
the most powerful, followed by the Sun Ultra 10, 5, 1,
and SPARCStation 2 in turn. In the experimental system,
each agent maintains a set of service information for the
other agents in the system. Each agent pulls service
information from its lower and upper agents every ten
seconds. All of the agents employ identical strategies

with the exception of the agent at the head of the
hierarchy (S1) that does not have an upper agent.

S1
(SGIOrigin2000, 16)

S2
(SGIOrigin2000, 16)

S4
(SunUltra10, 16)

S3
(SunUltra10, 16)

S5
(SunUltra5, 16)

S6
(SunUltra5, 16)

S12
(SunSPARCstati

on2, 16)

S11
(SunSPARCstati

on2, 16)

S8
(SunUltra1, 16)

S7
(SunUltra5, 16)

S10
(SunUltra1, 16)

S9
(SunUltra1, 16)

Figure 6. Case Study: Agents and Resources

The applications used in the experiments include
typical scientific computing programs. Each application
has been modelled and evaluated using PACE. An
example of the PACE predications for the system S1
(which represents the most powerful resource in the
experiment) can be found in Table 1.

Table 1. Case Study: Applications and
Requirements

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sweep3d
[4,200]

50 40 30 25 23 20 17 15 13 11 9 7 6 5 4 4

fft
[10,100]

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

improc
[20,192]

48 41 35 30 26 23 21 20 20 21 23 26 30 35 41 48

closure
[2, 36]

9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2

jacobi
[6,160]

40 35 30 25 23 20 17 15 13 11 10 9 8 7 6 6

memsort
[10,68]

17 16 15 14 13 12 11 10 10 11 12 13 14 15 16 17

cpi
[2,128]

32 26 21 17 14 11 9 7 5 4 3 2 4 7 12 20

As shown in the table, different applications have

different performance scenarios which has a significant
impact on the task scheduling results. During each
experiment, requests for one of the seven test applications
are sent at one second intervals to randomly selected
agents. The required execution time deadline for the
application is also selected randomly from a given
domain; the bounds of the application requirements can
also be found in Table 1. The request phase of each
experiment lasts for ten minutes during which 600 task
execution requests are sent out to the agents. While the
selection of agents, applications and requirements are
random, the seed is set to the same so that the workload
for each experiment is identical.

While the experiments use the same resource
configurations and application workloads, different
combinations of local grid scheduling algorithms and
global load balancing mechanisms are applied as shown
in Table 2.

Table 2. Case Study: Experimental Design

 Experiment Number
 1 2 3
FIFO algorithm �
Iterative heuristic algorithm � �
Agent-based service discovery �

The GA algorithm and agent-based service discovery

are introduced respectively in sections 2 and 3. The GA
scheduling is compared with the results from a simpler
first-in-first-out (FIFO) algorithm. The FIFO scheduling
does not change the order of tasks. Each task is
scheduled according to the time at which it arrives (also
driven by the PACE predictive data). All of the possible
resource allocations (a total of 216-1 possibilities) are
tried. As soon as the current best solution is found, it is
fixed and will not change as new tasks enter the system.
The three performance metrics are used to measure the
load balancing effect at both the local and global levels.

4.2. Experimental Results

The experimental results are given in Table 3; this
includes the three metrics applied to each agent and to all
the grid resources in the system.

Table 3. Case Study: Experimental Results

 Experiment Number
 1 2 3
 � (s) � (%) � (%) � (s) � (%) � (%) � (s) � (%) � (%)
S1 42 7 71 52 9 89 29 81 96
S2 11 9 78 34 9 89 23 81 95
S3 -135 13 62 23 13 92 24 77 87
S4 -328 22 45 -30 28 96 44 82 94
S5 -607 32 56 -492 58 95 38 82 94
S6 -321 25 56 -123 29 90 42 78 92
S7 -261 23 57 10 25 92 38 84 93
S8 -695 33 52 -513 52 90 42 82 91
S9 -806 45 58 -724 63 90 30 80 84
S10 -405 28 61 -129 34 94 25 81 94
S11 -1095 44 50 -816 73 92 35 75 89
S12 -859 41 46 -550 67 91 26 78 90
Total -475 26 31 -295 38 42 32 80 90

Experiment No. 1

In the first experiment, the FIFO algorithm is used
by each local grid scheduler with no supporting higher-
level agent-based mechanism provided. The algorithm
does not consider makespan, idletime or deadline. Each
scheduler receives approximately 50 task requests on
average, which results in only the powerful platforms

(SGI multiprocessors S1 and S2) meeting the
requirements. The slower machines including the Sun
SPARCstations clusters S11 and S12 impose serious delays
in task execution with long task queues. The overall
average delay for task execution is approximately 8
minutes. It is apparent that the high performance
platforms are not utilised effectively, and the lack of
proper scheduling overloads resources like S11 that is
only 44% utilised. The average utilisation of grid
resources is only 26%. The workload for each of the
processing nodes in each grid resource is also unbalanced.
For example the load balancing level of S12 is as low as
46%. The overall grid workload is also unbalanced at
31%.

Experiment No. 2
In experiment 2, the GA algorithm is used in place

of the FIFO algorithm although no higher-level agent-
based load-balancing mechanism is applied. The
algorithm aims to minimise makespan and idletime,
whilst meeting deadlines. Compared to those of
experiment 1, almost all metrics are improved. Task
executions are completed earlier and the average task
execution delay is reduced to approximately 5 minutes.
However, resources such as S11 and S12 remain
overloaded and the GA is not able to find solutions that
satisfy all the deadlines. Generally, resources are better
utilised as a result of the GA scheduling, such as the use
of S11 which increases from 44% to 73%. The overall
average utilisation also improves from 26% to 38%.
While load balancing on each grid resources is
significantly improved, the lack of any higher-level load-
balancing mechanism results in an improved overall grid
load balancing to 42% (as opposed to 31% in experiment
1).

Experiment No. 3
In experiment 3, the agent-based load-balancing

mechanism is enabled for high-level resource discovery.
This results in a new distribution of requests to the agents,
where the more powerful platform receives more requests.
As a result, the majority of task execution requirements
can be met and all grid resources are well utilised (80%
on average). The load balancing of the overall grid is
significantly improved from 42% (in experiment 2) to
90%. The load balancing on the grid resources such as S1
and S2 are only marginally improved by the GA
scheduling when the workload is higher. No other agents
show an improvement in local grid load balancing.

The experimental results in Table 3 are also
illustrated in Figures 7, 8 and 9, which illustrate the
effect on the performance metrics given in section 3.3.
The curves indicate that different platforms exhibit

different trends when the system is configured with local
and global load balancing mechanisms. Among these, the
curves for S1, S2, (which are the most powerful) and S11,
S12, (which are the least powerful) are representative and
are therefore emphasised, whilst others are indicated
using grey lines. The curve for the overall grid is
illustrated using a bold line.

Application Execution
In Figure 7, it is apparent that both the genetic

algorithm and agent-based service discovery contribute to
improving the application execution completion. The
curve implies that the more a resource is loaded the more
significant the effect is. For example, S1 and S2 are not
overloaded during the three experiments, and therefore
the value of � only changes slightly. S11 and S12 are
heavily overloaded during experiments 1 and 2, and
therefore the improvement of � in experiments 2 and 3 is
more significant. The results for S3 … S10 are distributed
between these two extremes. The curve for the overall
grid provides an average estimation for all situations,
which indicates that the agent-based mechanism
contributes more towards the improvement in application
executions than the local schedulers.

-1200

-1000

-800

-600

-400

-200

0

200

1 2 3

Experiment Number

� (
s)

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Total

Figure 7. Case Study: Trends I for Experiment

Results on Advance Times of Application
Execution Completion �

Resource Utilisation
The curves in Figure 8 illustrate similar trends to

those of Figure 7. S1, S2 and S11, S12 still represent the
two extreme situations between which the other platforms
are distributed. The curve for the overall grid indicates
that the agent-based mechanism contributes more to
maximising resource utilisation. However, overloaded
platforms like S11 and S12 benefit mainly from the GA
scheduling, which is more effective at load balancing
when the workload is high; lightly-loaded platforms like
S1 and S2 chiefly benefit from the agent-based mechanism,
which can dispatch more tasks to them.

0

10

20

30

40

50

60

70

80

90

1 2 3

Experiment Number

� (
%

)

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Total

Figure 8. Case Study: Trends II for Experiment
Results on Resource Utilisation rate �

Load Balancing
Curves in Figure 9 demonstrate that local and global

load balancing are achieved in different ways. While S1,
S2 and S11, S12 are two representative situations, the
global situation is not simply an average of local trends
as those illustrated in Figures 7 and 8. In the second
experiment when the GA scheduling is enabled, the load
balancing of local grid resources are significantly
improved. In the third experiment, when the agent-based
mechanism is enabled, the overall grid load balancing is
improved dramatically. It is clear that the GA scheduling
contributes more to local grid load balancing and agents
contribute more to global grid load balancing. The
coupling of both is therefore a good choice to achieve
grid load balancing at both local and global levels.

0
10
20
30
40
50
60
70
80
90

100

1 2 3

Experiment Number

� (
%

)

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Total

Figure 9. Case Study: Trends III for Experiment
Results on Load Balancing Level

�

5. Conclusions

This work addresses the problem of load balancing
in a global grid environment. A GA-based scheduler has

been developed for fine-grained load balancing at the
local level. This is then coupled with an agent-based
mechanism that is applied to load balance at a higher
level. Three experiments are carried out, with defined
performance metrics used to measure the effect of grid
load balancing. The experimental results demonstrate
that the agent-based mechanism coupled with
performance-driven task scheduling is suitable for grid
load balancing. Load balancing can have large impact on
both task executions and resource utilisation. In most
situations, good load balancing results in task execution
completing earlier with a better utilisation of grid
resources. Higher level load-balancing mechanisms
coupled with local level scheduling will provide a more
effective solution to load balancing on the overall grid
than the independent use of either approach.

The results presented in this paper will be compared
with other similar systems. Future enhancement to the
system will include the integration with other grid
toolkits (e.g. Globus MDS and NWS). Experiments to
test the scalability of the system will be carried out on a
grid test-bed being built at Warwick.

Acknowledgements

This work is sponsored by grants from the NASA
AMES Research Center (administered by USARDSG,
contract No. N68171-01-C-9012), the EPSRC (contract
No. GR/R47424/01), the EPSRC e-Science Core
Programme (contract No. GR/S03058/01), and the NEC.
The authors would like to express their gratitude to
previous members of the group at Warwick, including Dr.
S. C. Perry, Dr. J. S. Harper and Dr. D. J. Kerbyson, for
their contribution to this work.

References

[1] A. Abraham, R. Buyya, and B. Nath, Nature’s heuristics for

scheduling jobs on computational grids, in “Proc. 8th IEEE
International Conference on Advanced Computing and
Communications” , Cochin, India, 2000.

[2] D. Abramson, J. Giddy, and L. Kotler, High performance
parametric modelling with Nimrod/G: killer application for the
global grid? in “Proc. 14th International Parallel and
Distributed Processing Symposium” , Cancun, Mexico, 2000.

[3] D. Abramson, R. Sosic, J. Giddy, and B. Hall, Nimrod: a tool
for performing parameterized simulations using distributed
workstations, in “Proc. 4th IEEE International Symposium on
High Performance Distributed Computing” , Pentagon City,
VA, USA, 1995.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao,
Application-level scheduling on distributed heterogeneous
networks, in “Proc. 1996 Supercomputing” , Pittsburgh, PA,
USA, 1996.

[5] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
Performance modelling of parallel and distributed computing

using PACE, in “Proc. 19th IEEE International Performance,
Computing and Communication Conference” , pp. 485-492,
Phoenix, AZ, USA, 2000.

[6] J. Cao, D. J. Kerbyson, and G. R. Nudd, Dynamic application
integration using agent-based operational administration, in
“Proc. 5th International Conference on the Practical
Application of Intelligent Agents and Multi-Agent
Technology” , pp. 393-396, Manchester, UK, 2000.

[7] J. Cao, D. J. Kerbyson, and G. R. Nudd, High performance
service discovery in large-scale multi-agent and mobile-agent
systems, Int. J. Software Engineering and Knowledge
Engineering Special Issue on Multi-Agent Systems and
Mobile Agents 5 (October 2001), 621-641.

[8] J. Cao, D. J. Kerbyson, and G. R. Nudd, Performance
evaluation of an agent-based resource management
infrastructure for grid computing, in “Proc. 1st IEEE
International Symposium on Cluster Computing and the Grid” ,
pp. 311-318, Brisbane, Australia, 2001.

[9] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd,
ARMS: an agent-based resource management system for grid
computing, Scientific Programming, Special Issue on Grid
Computing 10 (2002), 135-148.

[10] I. Foster and C. Kesselman, Globus: a metacomputing
infrastructure toolkit, Int. J. High Performance Computing
Applications 2 (1997), 115-128.

[11] I. Foster and C. Kesselman, “The GRID: Blueprint for a New
Computing Infrastructure” , Morgan-Kaufmann, 1998.

[12] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke,
Condor-G: a computation management agent for multi-
institutional grids, in “Proc. 10th IEEE Symposium on High
Performance Distributed Computing” , San Francisco, CA,
USA, 2001.

[13] M. Litzkow, M. Livny, and M. Mutka, Condor – a hunter of
idle workstations, in “Proc. 8th International Conference on
Distributed Computing Systems” , pp. 104-111, San Jose, CA,
USA, 1988.

[14] H. Nakada, M. Sato, and S. Sekiguchi, Design and
implementations of Ninf: towards a global computing
infrastructure, Future Generation Computing Systems 5-6
(1999), 649-658.

[15] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J.
S. Harper, and D. V. Wilcox, PACE – a toolset for the
performance prediction of parallel and distributed systems, Int.
J. High Performance Computing Applications 3(2000), 228-
251.

[16] O. F. Rana, D. Bunford-Jones, D. W. Walker, M. Addis, M.
Surridge, and K. Hawick, Resource discovery for dynamic
clusters in computational grids, in “Proc. 10th IEEE
Heterogeneous Computing Workshop” , San Francisco, CA,
USA, 2001.

[17] Y. Tanaka, Ninf-G: grid RPC system based on the Globus
toolkit, in “The 2001 Globus Retreat” , San Francisco, CA,
USA, 2001.

[18] R. Wolski, N. T. Spring, and J. Hayes, The network weather
service: a distributed resource performance forecasting service
for metacomputing, Future Generation Computing Systems 5-
6 (1999), 757-768.

[19] S. Zhou, LSF: load sharing in large-scale heterogeneous
distributed systems, in “Proc. 1992 Workshop on Cluster
Computing” , 1992.

[20] A. Y. Zomaya and Y. The, Observations on using genetic
algorithms for dynamic load-balancing, IEEE Transactions on
Parallel and Distributed Systems 9 (September 2001), 899-
911.

