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Abstract 
 

Load balancing is a key concern when developing 
parallel and distributed computing applications. The 
emergence of computational grids extends this problem, 
where issues of cross-domain and large-scale scheduling 
must also be considered. In this work an agent-based 
grid management infrastructure is coupled with a 
performance-driven task scheduler that has been 
developed for local grid load balancing. Each grid 
scheduler utilises predictive application performance 
data and an iterative heuristic algorithm to engineer 
local load balancing across multiple processing nodes. 
At a higher level, a hierarchy of homogeneous agents are 
used to represent multiple grid resources. Agents 
cooperate with each other to balance workload in the 
global grid environment using service advertisement and 
discovery mechanisms. A case study is included with 
corresponding experimental results to demonstrate that 
both local schedulers and agents contribute to overall 
grid load balancing, which significantly improves grid 
application execution performance and resource 
utilisation. 
 
 
1. Introduction 
 

A computational grid is an emerging computing 
infrastructure that enables effective access to high 
performance computing resources [11]. Resource 
management and scheduling are key grid services, where 
issues of load balancing represent a common concern for 
most grid infrastructure developers. While these are 
established research areas in parallel and distributed 
computing, grid computing environments present a 
number of new challenges, including: 

• Cross-domain: The process of grid resource 
scheduling encompasses multiple administrative 

domains, where one domain may be unaware of the 
resources offered by another. The lack of central 
ownership and control means that it is difficult to 
map an entire set of tasks to permutations of the 
available resources. 

• Large-scale: As a grid can encompass a large 
number of high performance computing resources 
that are not entirely dedicated to the environment, 
computational capabilities can vary significantly 
over time. These dynamic properties must be 
addressed when implementing grid information and 
resource management infrastructures. 

In our previous work an agent-based methodology 
was developed for large-scale distributed software 
systems with highly dynamic behaviours [6, 7]. This has 
been used in the implementation of an agent-based 
resource management infrastructure for grid computing 
[8, 9], where each agent represents a local grid resource 
and acts as a service provider of high performance 
computing power. Agents cooperate with each other to 
discover available resources for tasks using a technique 
of service advertisement and discovery. 

The research presented in this paper adopts the 
agent-based methodology to grid load balancing, 
achieved by coupling the agent system with a 
performance-driven task scheduler that has been 
developed for local grid load balancing. Each local 
scheduler uses an iterative heuristic algorithm based on 
the predictive performance data for each application. The 
algorithm aims to minimise makespan and processor idle 
time, whilst meeting the deadlines set for each task. The 
algorithm is based on an evolutionary process and is 
therefore able to absorb system changes such as the 
addition or deletion of tasks, or changes in the number of 
hosts or processors available in the local domain. At a 
higher level, the hierarchy of homogeneous agents are 
responsible for dispatching tasks from grid users to each 
of the available local grid schedulers; this is orchestrated 



by some matchmaking and decision-making policies that 
are also driven by performance prediction data. Each 
agent is only aware of neighbouring agents and service 
advertisement and discovery requests are only processed 
among neighbouring agents, which provides the 
possibility for scaling over large wide-area grid 
architectures. 

Application performance prediction provides the 
essential functionality that enables the grid load 
balancing capabilities described in this work. The PACE 
toolkit [15] is used to provide this capability for both the 
local schedulers and the grid agents. The main 
components of the PACE toolkit include application tools, 
resource tools, and an evaluation engine. The PACE 
evaluation engine can combine application and resource 
models at run time to produce performance data (such as 
total execution time). In the work described in [5] an 
ASCI (Accelerated Strategic Computing Initiative) 
kernel application, Sweep3D, is used to illustrate the 
performance prediction capabilities of PACE. The 
validation results show that a high level of accuracy can 
be obtained, cross-platform comparisons can be easily 
undertaken, and the process benefits from a rapid 
evaluation time. These features allow PACE predictive 
data to be used on-the-fly for grid resource load 
balancing. 

There are a number of approaches to scheduling and 
load balancing parallel and distributed systems. Unlike 
batch queuing systems, such as Condor [13] and LSF 
[19], that address resource management within a local 
grid, the local grid scheduler described in this work is 
based on application performance prediction. While 
AppLeS [4] and Ninf [14] are also based on performance 
evaluation techniques, they utilise the NWS [18] resource 
monitoring service, as opposed to the performance 
prediction capabilities provide by the PACE toolkit. 
Nimrod [3] has a number of similarities to this work, 
including a parametric engine and heuristic algorithms 
[1] for scheduling jobs. The kernel of our local grid 
scheduler is a genetic algorithm (GA) [20]. Some 
existing systems use the Globus toolkit [10] to integrate 
with the grid computing environment, including Condor-
G [12], Nimrod/G [2] and Ninf-G [17]. The scheduler 
introduced in this work is distributed for grid computing 
using an agent-based methodology; where agents are 
used to control the query process and to make resource 
discovery decisions based on internal logic rather than 
relying on a fixed-function query engine. Agent-based 
resource discovery is also used in [16], where each agent 
either represents a user application, a resource, or a 
matchmaking service. Rather than using a collection of 
predefined specialised agents, this work uses a hierarchy 

of homogeneous agents that can be reconfigured with 
different roles at run time. 

The paper is organised as follows: section 2 
introduces the theory and implementation of the 
schedulers for local load balancing; in section 3, the 
agent-based implementation of a grid load balancing 
system is described; a case study with experimental 
results is included in section 4 and the paper concludes in 
section 5. 
 
2. Performance-Driven Task Scheduling 
 

In this work, a local grid is considered to be a 
network of processing nodes (such as a multiprocessor or 
a cluster of workstations). Load balancing issues are 
addressed at this level using task scheduling algorithms 
driven by PACE performance predictions. 
 
2.1 Genetic Algorithm 
 

Consider a grid resource P with n processing nodes. 
A PACE resource model �

i can be used to describe the 
performance information of each processor Pi. 

{ }niPP i ,......,2,1| ==   (1) 

{ }nii ,......,2,1| == ρρ   (2) 

A set of parallel tasks T is considered to be run on P, 
where a PACE application model � j includes the 
performance related information of each task Tj.  
Additionally, Tj is specified with a requirement of the 
application execution deadline � j from the user. 

{ }mjTT j ,......,2,1| ==   (3) 

{ }mjj ,......,2,1| == σσ   (4) 

{ }mjj ,......,2,1| == δδ   (5) 

A schedule is defined by a set of nodes PPj ⊆  

(corresponding ρρ ⊆j
) allocated to each task Tj and a 

start time � j at which the allocated nodes all begin to 
execute the task in unison. The execution time for each 
task Tj is a function, ),( jjxt σρ , provided by the PACE 

evaluation engine. The completion time � j of each task Tj 
is defined as: 

),( jjxjj t σρτη += .  (6) 

The makespan, � , for a particular schedule, which 
represents the latest completion time of any task, is 
subsequently defined as: 

{ }j
mj

ηω
≤≤

=
1
max ,   (7) 



The goal is to minimise function (7) with respect to 
the schedule, at the same time

jjj δη ≤∀ ,  should also be 

satisfied as far as possible. In order to obtain near 
optimal solutions to this combinatorial optimisation 
problem, the approach taken in this work is to find 
schedules that meet the above criteria through the use of 
an iterative heuristic method – in this case a genetic 
algorithm. The process involves building a set of 
schedules and identifying solutions that have desirable 
characteristics. These are then carried into the next 
generation. 

The technique requires a coding scheme that can 
represent all legitimate solutions to the optimisation 
problem. Any possible solution is uniquely represented by 
a particular string, Sk, and strings are manipulated in 
various ways until the algorithm converges on a near 
optimal solution. In order for this manipulation to 
proceed in the correct direction, a method of prescribing 
a quality value (or fitness) to each solution string is 
required. The algorithm for providing this value is called 
the fitness function fv. 
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Figure 1. An Example Coding Scheme and 
Corresponding Gantt Chart 

The coding scheme we have developed for this 
problem consists of two parts: an ordering part, which 
specifies the order in which the tasks are to be executed 
and a mapping part, which specifies the allocation of 
processing nodes to each task. The ordering of the task-
allocation sections in the mapping part of the string is 
commensurate with the task order. An example of a 
solution string and its associated schedule are shown in 

Figure 1. The execution times of the various tasks are 
provided by the performance prediction system and are 
associated with the task object for evaluation by the 
fitness function fv. 

A combined cost function is used which considers 
makespan, idle time and deadline. It is straightforward to 
calculate the makespan, � k, of the schedule represented 
by any solution string Sk. The nature of the idle time 
should also be taken into account. Idle time at the front of 
the schedule is particularly undesirable as this is the 
processing time which will be wasted first, and is least 
likely to be recovered by further iterations of the GA or if 
more tasks are added. Solutions that have large idle times 
are penalised by weighting pockets of idle time to give � k, 
which penalises early idle time more than later idle time. 
The contract penalty � k is derived from the expected 
deadline times �  and task completion time � . The cost 
value for a schedule, represented by a solution string Sk, 
is derived from these metrics and their impact 
predetermined by: 
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The cost value is then normalised to a fitness value 
using a dynamic scaling technique: 
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where fc
max and fc

min represent the best and worst cost 
value in the scheduling set. 

The genetic algorithm utilises a fixed population size 
and stochastic remainder selection. Specialised crossover 
and mutation functions are developed for use with the 
two-part coding scheme. The crossover function first 
splices the two ordering strings at a random location, and 
then reorders the pairs to produce legitimate solutions. 
The mapping parts are crossed over by first reordering 
them to be consistent with the new task order, and then 
performing a single-point (binary) crossover. The 
reordering is necessary to preserve the node mapping 
associated with a particular task from one generation to 
the next. The mutation stage is also two-part, with a 
switching operator randomly applied to the ordering 
parts, and a random bit-flip applied to the mapping parts. 
 
2.2 System Implementation 
 

A local grid scheduling system is developed in Java 
to implement the algorithm described above. It uses the 
PACE evaluation engine for application performance 
prediction data with several other modules included for 



task management, execution, and resource monitoring. 
The system implementation is illustrated in Figure 2. 

 

Figure 2. The System Implementation of a 
Performance-Driven Local Grid Scheduler 

• Task management. Requests are passed to the task 
management module where they queue for 
scheduling and execution. Each task is given a 
unique identification number and awaits the 
attention of the GA scheduler. Task management 
also interfaces with the operations on the task queue, 
including adding, deleting or inserting tasks. The 
task queue is regarded by the GA scheduling as the 
optimisation set of tasks T. 

• Resource monitoring. The resource monitoring is 
responsible for gathering statistics concerning the 
process nodes on which tasks may execute. These 
statistics include availability, load average and idle 
time. Currently, only host availability is supported, 
where the resource monitor queries each known node 
every five minutes. This is provided to the GA 
scheduler as the currently available resources P on 
which tasks can be scheduled. Resource monitoring 
is also responsible for organising the GA scheduling 
results and resource availabilities into service 
information that can be advertised. This is only used 
when a grid environment is considered and will be 
introduced in the following sections. 

• Task execution. This is responsible for executing the 
program associated with a task on a scheduled list of 
processors. Currently, MPI and PVM based 
programs are supported and the executable programs 
must be pre-compiled and available in all local file 
systems. It is envisaged that this will be extended as 
the system matures. 

The PACE evaluation engine is used to produce 
predictive data on the task execution time given 
appropriate application and resource models. While 
PACE evaluations complete relatively quickly (usually in 
the order of a few tenths of a second), as the search space 
of the GA is large, it is not usually possible to pre-
calculate all required performance estimates ahead of 

time. A demand-driven evaluation scheme is used, 
coupled with a cache of past evaluations. When a 
particular evaluation result is requested, the cache is 
searched. If the result already exists, it is returned to the 
scheduler. Otherwise the PACE evaluation engine 
executes and the result is added to the cache before being 
returned. 

The genetic algorithm and corresponding system 
implementation provide a fine-grained solution to 
dynamic load balancing on local grid resources and aim 
to maximise resource utilisation and meet task deadlines. 
However, this cannot provide load balancing services to a 
global grid since the GA does not scale to thousands of 
processing nodes and tasks. An additional mechanism for 
distributing over wide-area grid resources is required. 
This is achieved through the introduction of an agent-
based resource advertisement and discovery framework. 
 
3. Agent-based Grid Load Balancing 
 

The problem which is considered in this section is 
the discovery of grid resources that provide the optimum 
execution performance for globally grid-submitted tasks. 
This research is not aimed at co-allocating a task onto 
more than one grid resource. Most MPI or PVM based 
programs use tightly coupled parallelism and it is 
difficult to achieve high performance when relatively 
slow communication mediums are involved. 
 
3.1 Agent-based Service Discovery 
 

While agent-based service discovery and its 
application to grid resource management has been 
described in detail in previous work [6, 7, 8, 9], a brief 
introduction is provided which demonstrates how the 
concepts apply to grid load balancing. This is extended to 
include a detailed system implementation in section 3.2. 

A performance-driven scheduler (described in 
section 2) is responsible for managing the processing 
nodes at a local level and scheduling the incoming tasks 
to achieve local load balancing. Each agent provides a 
high-level representation of each local scheduler and 
therefore characterises these local resources as high-
performance computing service providers in the wider 
grid environment. This higher-level representation is 
enhanced by organising the agents into a hierarchy, 
where the service information provided at each local grid 
resource can be advertised throughout the hierarchy and 
agents can cooperate with each other to discover 
available resources. 

• Service advertisement. An agent can advertise 
service information to both upper and lower agents. 
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Different strategies can be used to control these 
processes, which has an impact on the system 
efficiency. Service information can be pushed to or 
pulled from other agents, a process that is triggered 
by system events or through periodic updates. 

• Service discovery. Discovering available services is 
also a cooperative activity. Within each agent, its 
own service is evaluated first. If the requirement can 
be met locally, the discovery ends successfully. 
Otherwise service information from both upper and 
lower agents is evaluated and the request dispatched 
to the agent which is able to provide the best 
requirement/resource match. If no service can meet 
the requirement, the request is submitted to the 
upper agent. When the head of the hierarchy is 
reached and the available service is still not found, 
the discovery terminates unsuccessfully (representing 
a request for a computing resource which is not 
supported by the available grid).  

While the processes of service advertisement and 
discovery is not motivated by grid scheduling and load 
balancing, it can result in an indirect coarse-grained load 
balancing effect. A task tends to be dispatched to a grid 
resource that has less workload and can meet the 
application execution deadline. The discovery process 
does not aim to find the best service for each request, but 
endeavours to find an available service provided by a 
neighbouring grid resource. While this may decrease the 
load balancing effect, the trade-off is reasonable as grid 
users prefer to find a satisfactory resource as fast and as 
local as possible. 

The advertisement and discovery mechanisms also 
allow possible system scalability. Most requests are 
processed in a local domain and need not to be submitted 
to a wider area. Both advertisement and discovery 
requests are processed between neighbouring agents and 
the system has no central structure which might act as a 
potential bottleneck. While further work is necessary to 
test the scalability of the system, the experiments 
described in section 4 illustrate the contribution of both 
local schedulers and agents to the process of grid load 
balancing. These experiments use the initial 
implementation as described below. 
 
3.2 System Implementation 
 

The system architecture can be found in Figure 3. 
Agents are implemented using Java and data are 
represented in an XML format. Different PACE tools are 
integrated for different uses. The local schedulers are 
performance-driven - as described in section 2. The detail 
of how the agents utilise the PACE performance data and 

work with local schedulers to achieve grid load balancing 
is described. 
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Figure 3. The System Architecture for Agent-
Based Grid Load Balancing 

Local schedulers are responsible for the submission 
of service information to the agents (see section 2.2). An 
example of this service information can be found in 
Figure 4. 
 
<agent gr i d t ype=” ser v i ce” > 
  <agent > 
    <addr ess>gem. dcs. war wi ck. ac. uk</ addr ess> 
    <por t >1000</ por t > 
  </ agent > 
  <c l ust er > 
    <addr ess>gem. dcs. war wi ck. ac. uk</ addr ess> 
    <por t >10000</ por t > 
    <t ype>SunUl t r a10</ t ype> 
    <npr oc>16</ npr oc> 
    <envi r onment >mpi </ envi r onment > 
    <envi r onment >pvm</ envi r onment > 
    <envi r onment >t est </ envi r onment > 
    <f r eet i me>Nov 15 04: 43: 10 2001</ f r eet i me> 
  </ c l ust er > 
<agent gr i d> 

Figure 4. An Example Service Information 

The identity of a local scheduler and its 
corresponding agent is provided by a tuple of the address 
and port used to initiate communication. The hardware 
model and the number of processors is also provided. The 
example specifies a single grid resource, in this case a 
cluster of 16 SunUltra10 workstations. To simplify the 
problem, the processors within each grid node are 
configured to be homogeneous. The application execution 
environments that are supported by the current 
implementation of the local schedulers include MPI, 
PVM, and a test mode that is designed for the 
experiments described in this work. Under test mode, 
tasks are not actually executed and the predictive 
application execution times are scheduled and assumed to 
be accurate. The latest GA scheduling makespan �  
indicates the earliest (approximate) time that 
corresponding processors become available for more 
tasks. Due to the effect of GA load balancing, it is 



reasonable to assume that all processors within a grid 
have approximately the same freetime. The agents use 
this item to estimate the workload of each grid resource 
and make decisions on where to dispatch incoming tasks. 
This item changes over time and must be frequently 
updated. Service advertisement is therefore important 
among the agents. 

A portal has been developed which allows users to 
submit requests destined for the grid resources. An 
example request is given in Figure 5. 

 
<agent gr i d t ype=" r equest " > 
  <appl i cat i on> 
    <name>sweep3d</ name> 
    <bi nar y> 
      <f i l e>bi nar y/ sweep3d</ f i l e> 
      <i nput f i l e>bi nar y/ i nput . 50</ i nput f i l e> 
    </ bi nar y> 
    <per f or mance> 
      <dat at ype>pacemodel </ dat at ype> 
      <model name>model / sweep3d</ model name> 
    </ per f or mance> 
  </ appl i cat i on> 
  <r equi r ement > 
    <envi r onment >t est </ envi r onment > 
    <deadl i ne>Nov 15 04: 43: 17 2001</ deadl i ne> 
  </ r equi r ement > 
  <emai l >j unwei @dcs. war wi ck. ac. uk</ emai l > 
</ agent gr i d> 

Figure 5. An Example Request Information 

A user is required to specify the details of the 
application, the requirements and contact information for 
each request. Application information includes binary 
executable files and also the corresponding PACE 
application performance model � r, which is generated 
using the application tools embedded in the user portal. 
In the current implementation we assume that both 
binary and model files are pre-compiled and available in 
all local file systems. In the requirements, both the 
application execution environment and the required 
deadline time � r should be specified. Currently the user’s 
email address is used as the contact information to which 
the results of the submission are posted. 

Service discovery processes are triggered by the 
arrival of a request at an agent, where the kernel of this 
process is the matchmaking between service and request 
information. This match is straightforward if a local grid 
scheduler can provide the required application execution 
environment. The expected execution completion time 
for a given task on a given resource can be estimated 
using: 

{ }),(min
,,,

rx
PPP

r t σρωη
ρρρ Φ≠⊆Φ≠⊆∀

+= .  (10) 

For a homogeneous local grid resource, the PACE 
evaluation function is called n times. If 

rr δη ≤ , the 

resource is considered to be able to meet the required 
deadline. Otherwise, an appropriate local resource is not 

considered available for the incoming task. This 
performance estimation of local grid resources at the 
agent level is simple but efficient. However, when the 
task is dispatched to an available resource, the real 
situation may differ from the scenario considered in (10). 
The local GA scheduler may change the task order and 
advance or postpone a specific task execution in order to 
balance the workload on different processors, and in so 
doing maximise resource utilisation whilst maintaining 
the deadline contracts of each user. 

Service discovery for a request within an agent 
involves multiple matchmaking processes. An agent 
always gives priority to the local scheduler. Only when 
the local resource is unavailable is the service 
information of other grid resources evaluated and the 
request dispatched to another agent. In order to measure 
the effect of this mechanism for grid scheduling and load 
balancing, several performance metrics are defined. 
 
3.3. Performance Metrics 
 

There are a number of performance criteria that can 
be used to describe grid resource management and 
scheduling systems. What is considered as high 
performance depends on the system requirements. In this 
work three common statistics are investigated 
quantitatively and used to characterise the effect of grid 
load balancing. These include: average advance time of 
application execution completion � , average resource 
utilisation rate �  and load balancing level 

�
. 

During a period of time t, a set of M parallel tasks T 
are scheduled onto grid resources P with N processing 
nodes. Note that the processing nodes may include those 
at all local grids. The final scheduling scenario can be 
described using the allocation to each task Tj (with 
deadline � j) a set of nodes PPj ⊆  and a time domain [ � j, 

� j] during which the allocated nodes are simultaneously 
utilised for task execution. 

The average advance time of application execution 
completion �  can be calculated directly using: 

M

M

j
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�

=

−
= 1

)( ηδ
ε ,   (11) 

which is negative when most deadlines fail. The resource 
utilisation rate � i of each processing node Pi is calculated 
as follows: 

t
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The average resource utilisation rate �  of all 
processing nodes P is: 

N

N

i
i

�
== 1

υ
υ ,   (13) 

where �  is in the range 0 … 1. The mean square 
deviation of � i is defined as: 

N
d

N

i
i

�
=

−
= 1

2)( υυ
,  (14) 

and the relative deviation of d over �  that describes the 
load balancing level of the system is: 

υ
β d−=1 .   (15) 

The most effective load balancing is achieved when 
d equals zero and �  equals 1. The three aspects of the 
system described above are interrelated. For example, if 
the grid workload is balanced across all the processing 
nodes, the resource utilisation rate is usually high and the 
tasks finish quickly. These are illustrated in the case 
study described in the next section. 
 
4. A Case Study 
 

Three experiments have been designed using the 
system implementations described in sections 2 and 3 to 
evaluate different load balancing configurations. 
Experimental results regarding the three performance 
metrics are also included to illustrate the contribution of 
local schedulers and agents for grid load balancing to 
improve both resource utilisation and application 
execution. 
 
4.1. Experimental Design 
 

The experimental system is configured with twelve 
agents, illustrated by the hierarchy shown in Figure 6. 
These agents are named S1……S12 (for the sake of 
brevity) and represent heterogeneous hardware resources 
containing sixteen processing nodes per resource. As 
shown in Figure 6, the resources range in their 
computational capabilities. The SGI multi-processor is 
the most powerful, followed by the Sun Ultra 10, 5, 1, 
and SPARCStation 2 in turn. In the experimental system, 
each agent maintains a set of service information for the 
other agents in the system. Each agent pulls service 
information from its lower and upper agents every ten 
seconds. All of the agents employ identical strategies 

with the exception of the agent at the head of the 
hierarchy (S1) that does not have an upper agent. 
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Figure 6. Case Study: Agents and Resources 

The applications used in the experiments include 
typical scientific computing programs. Each application 
has been modelled and evaluated using PACE. An 
example of the PACE predications for the system S1 
(which represents the most powerful resource in the 
experiment) can be found in Table 1. 

Table 1. Case Study: Applications and 
Requirements 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
sweep3d 
[4,200] 

50 40 30 25 23 20 17 15 13 11 9 7 6 5 4 4 

fft 
[10,100] 

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 

improc 
[20,192] 

48 41 35 30 26 23 21 20 20 21 23 26 30 35 41 48 

closure 
[2, 36] 

9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 

jacobi 
[6,160] 

40 35 30 25 23 20 17 15 13 11 10 9 8 7 6 6 

memsort 
[10,68] 

17 16 15 14 13 12 11 10 10 11 12 13 14 15 16 17 

cpi 
[2,128] 

32 26 21 17 14 11 9 7 5 4 3 2 4 7 12 20 

 
As shown in the table, different applications have 

different performance scenarios which has a significant 
impact on the task scheduling results. During each 
experiment, requests for one of the seven test applications 
are sent at one second intervals to randomly selected 
agents. The required execution time deadline for the 
application is also selected randomly from a given 
domain; the bounds of the application requirements can 
also be found in Table 1. The request phase of each 
experiment lasts for ten minutes during which 600 task 
execution requests are sent out to the agents. While the 
selection of agents, applications and requirements are 
random, the seed is set to the same so that the workload 
for each experiment is identical. 



While the experiments use the same resource 
configurations and application workloads, different 
combinations of local grid scheduling algorithms and 
global load balancing mechanisms are applied as shown 
in Table 2. 

Table 2. Case Study: Experimental Design 

 Experiment Number 
 1 2 3 
FIFO algorithm �    
Iterative heuristic algorithm  �  �  
Agent-based service discovery   �  

 
The GA algorithm and agent-based service discovery 

are introduced respectively in sections 2 and 3. The GA 
scheduling is compared with the results from a simpler 
first-in-first-out (FIFO) algorithm. The FIFO scheduling 
does not change the order of tasks. Each task is 
scheduled according to the time at which it arrives (also 
driven by the PACE predictive data). All of the possible 
resource allocations (a total of 216-1 possibilities) are 
tried. As soon as the current best solution is found, it is 
fixed and will not change as new tasks enter the system. 
The three performance metrics are used to measure the 
load balancing effect at both the local and global levels. 
 
4.2. Experimental Results 
 

The experimental results are given in Table 3; this 
includes the three metrics applied to each agent and to all 
the grid resources in the system. 

Table 3. Case Study: Experimental Results 

 Experiment Number 
 1 2 3 
 � (s) � (%) � (%) � (s) � (%) � (%) � (s) � (%) � (%) 
S1 42 7 71 52 9 89 29 81 96 
S2 11 9 78 34 9 89 23 81 95 
S3 -135 13 62 23 13 92 24 77 87 
S4 -328 22 45 -30 28 96 44 82 94 
S5 -607 32 56 -492 58 95 38 82 94 
S6 -321 25 56 -123 29 90 42 78 92 
S7 -261 23 57 10 25 92 38 84 93 
S8 -695 33 52 -513 52 90 42 82 91 
S9 -806 45 58 -724 63 90 30 80 84 
S10 -405 28 61 -129 34 94 25 81 94 
S11 -1095 44 50 -816 73 92 35 75 89 
S12 -859 41 46 -550 67 91 26 78 90 
Total -475 26 31 -295 38 42 32 80 90 

 
Experiment No. 1 

In the first experiment, the FIFO algorithm is used 
by each local grid scheduler with no supporting higher-
level agent-based mechanism provided. The algorithm 
does not consider makespan, idletime or deadline. Each 
scheduler receives approximately 50 task requests on 
average, which results in only the powerful platforms 

(SGI multiprocessors S1 and S2) meeting the 
requirements. The slower machines including the Sun 
SPARCstations clusters S11 and S12 impose serious delays 
in task execution with long task queues. The overall 
average delay for task execution is approximately 8 
minutes. It is apparent that the high performance 
platforms are not utilised effectively, and the lack of 
proper scheduling overloads resources like S11 that is 
only 44% utilised. The average utilisation of grid 
resources is only 26%. The workload for each of the 
processing nodes in each grid resource is also unbalanced. 
For example the load balancing level of S12 is as low as 
46%. The overall grid workload is also unbalanced at 
31%. 

Experiment No. 2 
In experiment 2, the GA algorithm is used in place 

of the FIFO algorithm although no higher-level agent-
based load-balancing mechanism is applied. The 
algorithm aims to minimise makespan and idletime, 
whilst meeting deadlines. Compared to those of 
experiment 1, almost all metrics are improved. Task 
executions are completed earlier and the average task 
execution delay is reduced to approximately 5 minutes. 
However, resources such as S11 and S12 remain 
overloaded and the GA is not able to find solutions that 
satisfy all the deadlines. Generally, resources are better 
utilised as a result of the GA scheduling, such as the use 
of S11 which increases from 44% to 73%.  The overall 
average utilisation also improves from 26% to 38%. 
While load balancing on each grid resources is 
significantly improved, the lack of any higher-level load-
balancing mechanism results in an improved overall grid 
load balancing to 42%  (as opposed to 31% in experiment 
1). 

Experiment No. 3 
In experiment 3, the agent-based load-balancing 

mechanism is enabled for high-level resource discovery. 
This results in a new distribution of requests to the agents, 
where the more powerful platform receives more requests. 
As a result, the majority of task execution requirements 
can be met and all grid resources are well utilised (80% 
on average). The load balancing of the overall grid is 
significantly improved from 42% (in experiment 2) to 
90%. The load balancing on the grid resources such as S1 
and S2 are only marginally improved by the GA 
scheduling when the workload is higher. No other agents 
show an improvement in local grid load balancing. 

The experimental results in Table 3 are also 
illustrated in Figures 7, 8 and 9, which illustrate the 
effect on the performance metrics given in section 3.3. 
The curves indicate that different platforms exhibit 



different trends when the system is configured with local 
and global load balancing mechanisms. Among these, the 
curves for S1, S2, (which are the most powerful) and S11, 
S12, (which are the least powerful) are representative and 
are therefore emphasised, whilst others are indicated 
using grey lines. The curve for the overall grid is 
illustrated using a bold line. 

Application Execution 
In Figure 7, it is apparent that both the genetic 

algorithm and agent-based service discovery contribute to 
improving the application execution completion. The 
curve implies that the more a resource is loaded the more 
significant the effect is. For example, S1 and S2 are not 
overloaded during the three experiments, and therefore 
the value of �  only changes slightly. S11 and S12 are 
heavily overloaded during experiments 1 and 2, and 
therefore the improvement of �  in experiments 2 and 3 is 
more significant. The results for S3 … S10 are distributed 
between these two extremes. The curve for the overall 
grid provides an average estimation for all situations, 
which indicates that the agent-based mechanism 
contributes more towards the improvement in application 
executions than the local schedulers. 
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Figure 7. Case Study: Trends I for Experiment 

Results on Advance Times of Application 
Execution Completion �  

Resource Utilisation 
The curves in Figure 8 illustrate similar trends to 

those of Figure 7. S1, S2 and S11, S12 still represent the 
two extreme situations between which the other platforms 
are distributed. The curve for the overall grid indicates 
that the agent-based mechanism contributes more to 
maximising resource utilisation. However, overloaded 
platforms like S11 and S12 benefit mainly from the GA 
scheduling, which is more effective at load balancing 
when the workload is high; lightly-loaded platforms like 
S1 and S2 chiefly benefit from the agent-based mechanism, 
which can dispatch more tasks to them. 
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Figure 8. Case Study: Trends II for Experiment 
Results on Resource Utilisation rate �  

Load Balancing 
Curves in Figure 9 demonstrate that local and global 

load balancing are achieved in different ways. While S1, 
S2 and S11, S12 are two representative situations, the 
global situation is not simply an average of local trends 
as those illustrated in Figures 7 and 8. In the second 
experiment when the GA scheduling is enabled, the load 
balancing of local grid resources are significantly 
improved. In the third experiment, when the agent-based 
mechanism is enabled, the overall grid load balancing is 
improved dramatically. It is clear that the GA scheduling 
contributes more to local grid load balancing and agents 
contribute more to global grid load balancing. The 
coupling of both is therefore a good choice to achieve 
grid load balancing at both local and global levels. 
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Figure 9. Case Study: Trends III for Experiment 
Results on Load Balancing Level 

�
 

5. Conclusions 
 

This work addresses the problem of load balancing 
in a global grid environment. A GA-based scheduler has 



been developed for fine-grained load balancing at the 
local level. This is then coupled with an agent-based 
mechanism that is applied to load balance at a higher 
level. Three experiments are carried out, with defined 
performance metrics used to measure the effect of grid 
load balancing. The experimental results demonstrate 
that the agent-based mechanism coupled with 
performance-driven task scheduling is suitable for grid 
load balancing. Load balancing can have large impact on 
both task executions and resource utilisation. In most 
situations, good load balancing results in task execution 
completing earlier with a better utilisation of grid 
resources. Higher level load-balancing mechanisms 
coupled with local level scheduling will provide a more 
effective solution to load balancing on the overall grid 
than the independent use of either approach. 

The results presented in this paper will be compared 
with other similar systems. Future enhancement to the 
system will include the integration with other grid 
toolkits (e.g. Globus MDS and NWS). Experiments to 
test the scalability of the system will be carried out on a 
grid test-bed being built at Warwick. 
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